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ABSTRACT
With the rapid advancements in surveillance camera technol-
ogy, there has been a surge in crimes involving illegal filming
using hidden cameras. However, current solutions necessi-
tate slow manual scanning processes that require thousands
of workers within a city to ensure coverage. To address this
challenge, we introduce Sherlock, a fully automated hidden
camera detection system that utilizes a drone in combina-
tion with a flickering flashlight. To expedite the scanning
process and accommodate the irregular movements of the
drone, Sherlock leverages the rolling shutter effect to capture
images when the flashlight is turned on and off within a sin-
gle frame. This methodology enables Sherlock to efficiently
identify reflective objects and detect hidden camera lenses
among them. To demonstrate the feasibility of Sherlock, we
present a proof-of-concept evaluation by deploying a drone
in various environments to detect and locate hidden cameras.

1 INTRODUCTION
Rapid growth in surveillance camera technology has led
to a proliferation of the security camera market. However,
such growth also exacerbates privacy invasion using hidden
cameras. To address these concerns, Airbnb, for instance,
has implemented a policy that strictly prohibits using any
concealed monitoring devices in its rental apartments [1].
However, enforcing compliance with such rules is practically
challenging due to the difficulty in detecting hidden cameras.
Hidden cameras can be easily purchased from online retail-
ers [2, 3, 7] and installed in any private space In South Korea,
there were over 30,000 reported cases of illegal filming using
hidden cameras in five years, with a significant number of
these incidents occurring in public restrooms [9].

Conventional camera detectors assist users in visually lo-
cating camera lenses or identifying their distinct wireless sig-
nals [16]. However, this method requires a slow, meticulous,
and manual sweep of the entire area, requiring significant
human resources with low guarantee of success. For example,
South Korea hired over 8,000 workers in Seoul to regularly
inspect public restrooms. This is clearly not scalable.
Recent approaches identify hidden cameras by scrutiniz-

ing wireless signals. However, such techniques cannot be
applied to non-wireless cameras. An alternative method
pinpoints the lens of hidden cameras directly. For instance,

Figure 1: Figure illustrates the system overview of Sher-
lock in a public restroom scenario. A drone equipped
with a high-frequency flashlight and a camera maneu-
vers within the toilet stall to detect hidden cameras.

LAPD [17] utilizes Time-of-Flight (ToF) sensors to illuminate
a designated area and identify camera lenses via the retro-
reflective quality of these lenses. However, this approach
requires users to scan each suspicious object separately.

Hence, we need a novel solution to detect hidden cameras
in public facilities, particularly in areas like public restrooms.
The solution require minimal human effort, and precisely
identify hidden cameras in unspecified areas without the
need to pre-define suspicious objects. Furthermore, the solu-
tion should be cost-effective to ensure broad deployment.

To address the aforementioned requirements, we present
Sherlock, a fully automated hidden camera detection system
with an RGB camera attached to a drone, as depicted in
Figure 1. By automating the scanning system using a drone,
Sherlock scans a wide area without manual effort. Sherlock’s
primary goal is to accurately detect the presence of hidden
cameras within a minimal scanning duration using widely
available commodity devices. To achieve this, Sherlock uses
the camera lens’ retro-reflective property. By flashing a light
on a reflective camera lens’ surface, Sherlock’s RGB camera
can locate the unnaturally reflective hidden camera lens.

We face several technical challenges to realize our method:
(i) Ambient light and other background reflective objects
make distinguishing which reflections are hidden cameras
difficult. (ii) Using flickering light to detect reflective objects
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requires us to capture at least two static images when the
light is on and off, resulting in a long scanning time. (iii) The
drone’s irregular movements cause a warped image, making
detection more challenging.

To tackle these issues, we propose a technique to capture
multiple instances of an object in a single frame with a flick-
ering flashlight. The drone illuminates a target space with
the flashlight, exploiting the rolling-shutter effects of an RGB
camera to capture multiple instances of an object in a single
frame. The sequential readout nature of the CMOS sensor
array causes these rolling shutter effects; each row of the
sensor array captures at a different time, resulting in a geo-
metric distortion of the image [12]. While this distortion is
often undesirable, Sherlock exploits these characteristics to
capture multiple instances of the target area (i.e., when the
flashlight is turned on and off).

We evaluate Sherlock in different environments, including
varying distances, speeds, and ambient light conditions. To
test the feasibility and generalizability of Sherlock, we use a
cheap educational-purpose drone to detect various camera
modules.
We make the following contributions: (i) We present a

fully automated hidden camera detection mechanism; (ii)
we design an exposure adaptation methodology that enables
our system to be installed on various drones; and (iii) we
evaluated the real-time performance of Sherlock in various
environments.

2 BACKGROUND
We now present relevant background and a feasibility study.

2.1 Rolling-shutter Effects
Automating lens detection using a camera encounters a sig-
nificant drawback of slow scanning speed. Unlike other lens
detection methods, Sherlock’s automated lens detection ap-
proach necessitates capturing multiple distinct images with
the flashlight turned on and off. To scan a designated area,
the drone must maneuver through the room, capturing im-
ages at different moments when the flash is activated and
deactivated. This time-consuming process delays obtaining
results and increases the drone’s power consumption, conse-
quently limiting the scanning area. To address this problem,
Sherlock capitalizes on the rolling-shutter effect of the cam-
era [12], enabling the capture of multiple functional image
fragments within a single image frame.

Another significant issue is dynamic range; while human
eyes perceive brightness non-linearly, allowing for a wide
range of brightness, cameras often struggle with overexpo-
sure and underexposure when dealing with scenes contain-
ing elements of varying intensity. While industrial cameras

Camera lens location

Other reflective objects

Stripe caused by rolling 
shutter effect

Target camera device

Canny edge detection

Figure 2: Figure illustrates the detected camera lens
location as well as other reflective objects using canny
edge detection with rolling shutter effects.

employ global shutters to simulate human eye-like percep-
tion, most consumer digital cameras, pinhole cameras, and
smartphones employ the rolling shutter sampling mecha-
nism [10], primarily responsible for their sensitivity to high-
frequency flickering.

2.2 Feasibility Study
We conduct a feasibility study utilizing a commercially avail-
able hidden camera to validate our hypothesis of using the
rolling-shutter effect for hidden camera detection. Figure 2
illustrates the captured frame from a CMOS camera. Due to
the rolling-shutter effect, the image exhibits multiple stripe
patterns: half dark and half bright. The dark stripes corre-
spond to moments when the flashlight is turned off, while
the bright stripes represent moments when the flashlight
is turned on. By comparing these two images, it becomes
possible to identify several areas that reflect light, which
potentially include the hidden camera lens. However, dif-
ferentiating between retro-reflections from the hidden cam-
era and other high-intensity reflections poses a challenge.
Additionally, depending on the widths of the stripes, it is
conceivable that a single dark or bright stripe may cover
the entire lens area. We describe how we overcome these
challenges in Section 3.

3 SYSTEM DESIGN
We now present details on Sherlock’s design.

3.1 Design Overview
Our design goal is to maximize the hidden camera detection
accuracy and generalizability to a wide range of low-cost
drones. The major characteristics of low-cost drones are their
relatively short flight time, and irregular movements during
flights, causing inconsistency of the target object locations in
consecutive captured frames. To solve this, our design aims
to minimize the required captured image frames to complete
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hidden camera inspection, increase scanning speed but also
improving detection accuracy.
As depicted in Figure 3, the overall procedure is divided

into two phases: exposure adaptation and image data anal-
ysis. The main goal of the exposure adaptation phase is to
adjust the drone’s camera settings to maximize rolling shut-
ter effects, minimizing the number of frames necessary for
analysis. After the exposure adaptation phase, the drone is
capable of providing information-rich images to the image
data analysis phase. During this phase, the provided image
is disassembled into two images (bright and dark). These
two images are then compared to detect reflective objects,
namely the candidates for hidden camera lenses. These can-
didates are fed to our Siamese network image classifier for
final detection of hidden camera lenses.

Figure 3: Sherlock’s system overview consists of two
phases: Exposure adaptation phase and Image data
analysis phase. Exposure adaptation phase calibrates
the drone’s camera to control the stripe widths caused
by rolling shutter effects, after which Image data anal-
ysis phase inspects the images to detect hidden camera
lens.

3.2 Exposure Adaptation
The exposure adaptation module takes images captured by
the drone, analyzes the stripes caused by the rolling shutter
effect and adapts the exposure accordingly.
For Sherlock to successfully capture multiple instances

of the hidden camera lens, the stripes caused by the rolling
shutter effectmust not cover the entire lens area. For instance,
if the stripes are too wide, the captured frame has the entire
lens area reflecting the flashlight (i.e., bright instance). If too
narrow, the camera fails to capture enough informationwhen
the flickering flashlight is turned off. Therefore, Sherlock
requires a methodology that can adjust the stripe widths and
increase the chance of capturing multiple instants of the lens
area in a single frame.

Figure 4: Figure illustrates (a) the captured image and
(b) average pixel value for each image column, used
for initial stripe width estimation.

Wepropose and apply exposure time adaptation. Thewidths
of the stripes caused by the rolling shutter effects are im-
pacted by the following components: the sampling rate and
exposure time of the camera’s image sensor and the fre-
quency of the flickering flashlight as shown in the equation
below [21].

𝑊 =
��(𝑡𝑒 mod 𝑡𝑜 𝑓 𝑓 ) − 𝑡𝑜𝑛

�� /𝑡𝑠 (1)
where𝑊 represents the width of each stripe, 𝑡𝑒 and 𝑡𝑠 repre-
sent exposure time and image sensor’s sampling rate, and
𝑡𝑜 𝑓 𝑓 and 𝑡𝑜𝑛 refer to on/off duration of the flashlight.

The sampling rate of the image sensor and the frequency
of the flickering flashlight are fixed based on the camera and
flashlight hardware, respectively. However, most cameras
offer functions to adjust the exposure time. Sherlock utilizes
this function to adjust the camera setting and control the
widths of the stripes if needed.

For our prototype, we empirically set the target widths
of the stripes as (image width in pixels) / 20. To ensure the
broader applicability of our solution, we assume that the
drone has no knowledge of the flickering flashlight’s light
duty cycle (i.e., frequency). As a result, the only known vari-
ables are 𝑡𝑒 and 𝑡𝑠 . To address this, Sherlock estimates the
initial value of𝑊 by analyzing the raw image data captured.
Sherlock uses image processing to estimate the initial

stripe width and leverage the periodically occurring nature
of stripes caused by rolling shutter effects. As shown in the
Figure 4, we first calculate the average pixel value for each
column of the image. From this, we calculate the moving min-
imum and moving maximum (𝑚𝑜𝑣𝑚𝑖𝑛 and𝑚𝑜𝑣𝑚𝑎𝑥) with
moving window size of 200 pixels. We then compute the peak
borderline (where peak borderline = (𝑚𝑜𝑣𝑚𝑖𝑛 +𝑚𝑜𝑣𝑚𝑎𝑥)/2)
that determines which pixel columns belong to the stripes
caused by the rolling shutter effects.
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As illustrated in Figure 4, the peak borderline does not
guarantee perfect estimations of the stripe locations. How-
ever, because all stripes have the same widths and are equally
spaced out, we can use these features to correctly identify
the stripes. Moreover, to improve the estimation accuracy,
Sherlock uses multiple image frames to improve its estima-
tion of the initial stripe width. For our prototype, Sherlock
takes 300 image frames for the estimation.

Then, using the equation above, we can also estimate the
flickering flashlight’s frequency and compute the required
exposure time to adjust the widths of the stripes. The entire
exposure adaptation phase acts as an one-time calibration
for the Sherlock, after which only the image analysis phase
is repeated for hidden camera detection.

3.3 Image Data Analysis
3.3.1 Image Disassembler. The primary goal of the "Image
Disassembler" is to generate two distinct images from a single
source image, which are subsequently compared to identify
reflective objects. These two images are referred to as the
bright image and the dark image. The bright image com-
prises the moments when the flickering flashlight is turned
on, while the dark image comprises the moments when the
flickering flashlight is turned off, (i.e., stripes caused by the
rolling shutter effects).

Leveraging the periodically occurring nature of the stripes,
Sherlock uses periodic noise removal techniques to separate
these two images. A notch filter based on the fuzzy transform
is proposed to smooth the spectrum and separate the original
image from the periodic noise components. The filter targets
and suppresses the identified noise peaks while preserving
the underlying image details.

These bright image and dark images are compared via im-
age differencing and contour detection to detect objects that
reflect the flickering flashlight. With the pixel positions of
the detected objects, Sherlock creates candidates for possible
hidden camera lens.

3.3.2 Image Classification. In the previous stages, exposure
adaptation and image disassembler play major roles in reduc-
ing the number of candidates, image classification in Sherlock
plays relatively minor role: verifying whether the candidate
is indeed a hidden camera lens. Sherlock employs the Sim-
Siam [4] method, an unsupervised pre-training approach
for deep neural networks, a popular method in identifying a
specified object from images. Due to lack of camera lens open
datasets, we collected over 100 images of hidden camera lens.
We incorporated self-supervised contrastive learning with
SimSiam model to compensate for our small dataset.

Our trained model takes crops of images scaled to 100x100,
each representing a candidate for hidden camera lens, and

outputs the classification results, alerting the user if the
camera lens is detected.

4 PRELIMINARY EVALUATION
We now present Sherlock’s preliminary evaluation results.

4.1 Experimental Setup
Apparatus. We use a Tello drone, a mini drone equipped
with an HD camera. For the flickering flashlight, we attached
an external 80Hz flickering LED device [15], a commercially
available strobe light device designed for the drone’s anti-
collision system at night. We use the OV2640 mini compact
camera module for the hidden cameras.
Experimental procedure. Figure 5 illustrates our exper-
imental procedures for evaluating Sherlock. Through this
experiment, we aim to measure both accuracy and scanning
duration to detect a hidden camera.

c

Figure 5: Figure illustrates Tello drone with a LED
strobe attached, OV2640 camera module hidden in a
toilet paper dispenser, and overview of various envi-
ronments for Sherlock’s evaluations.

As discussed in Section 1, public restrooms are among
the most frequently targeted locations for hidden camera
installations, and the toilet paper dispenser, given the limited
objects within such facilities, is a commonly chosen location
for this illicit purpose. For this reason, for our evaluation, we
installed the hidden camera in the center of the toilet paper
dispenser to simulate a public restroom scenario.

We measure the following metrics for our evaluation:
4



Sherlock: Automated Hidden Camera Detection with Shutter Speed Adaptation Conference’17, July 2017, Washington, DC, USA

Figure 6: Figure depicts the detection accuracy of Sher-
lock with (a) varying distances, (b) varying speeds, and
(c) varying ambient light intensities.

(1) Detection accuracy:Given a fixed time or the number
of sweeps, the detection accuracy is the percentage of
successful detections of the hidden camera lens.

(2) False positive Rate:Given a fixed time or the number
of sweeps, the false positive rate is the percentage of
Sherlock’s incorrect classifications of reflective objects
that are not hidden camera lenses.

(3) Scanning time: Scanning time refers to the time re-
quired for a drone to successfully detect the target
hidden camera.

4.2 Preliminary Results
To evaluate the overall performance, we set a scanning time
limit of 2 minutes for each test run, and recorded the number
of successful detection of the hidden camera lens. As a re-
sult, Sherlock achieves a detection accuracy of 85%, meaning
it successfully detected the presence of hidden cameras in
the majority of cases. Moreover, the false positive rate was
measured at a modest 5%, indicating a relatively low rate of
mistakenly identifying non-existent hidden lenses.
In addition to assessing the detection and false positive

rates, we conduct an experiment to measure the scanning
time required for Sherlock to identify the target hidden lens.
The results show that Sherlock took approximately 121 sec-
onds to successfully detect the camera lens.

4.2.1 Controlled experiments. We evaluate the detection ac-
curacy of Sherlock in various environments to evaluate their
impacts and find ideal settings.We vary the distance between
the drone and the hidden camera, speed of the drone and the
ambient light intensity. The default setup is 5 cm distance, 5
cm/s speed and 400 lx ambient light intensity.

Our results indicate that the detection accuracy decreases
as distance and speed increase. At a longer distance, the
reflection from the flickering flashlight diminishes, and with
higher speed, the quality of the capture image degrades.
For the ambient light intensity, the accuracy falls when the
intensity is either too high or too low. If the ambient light
intensity is too high, the illuminating effects of flickering
flashlight are weakened. In a dark environment, on the other
hand, the accuracy falls drastically because Sherlock fails to
capture a usable image when the flashlight is turned off.

5 DISCUSSION
We present relevant discussion points in this section.

5.1 Light Intensity and Blinking Frequency
Sherlock uses light and dark contrasts captured by a flashlight
to find flickering areas (i.e., potential camera lenses). Higher
flashlight brightness and blinking frequency improve lens
detection. Sherlock uses a commercial flashlight with limi-
tations but mitigates them with exposure time adaptation.
Using a more powerful flashlight would enhance detection
at greater distances. Moreover, camera specifications, such
as resolution and frames per second, affect image clarity. Re-
placing the low-cost camera with a higher-performing one
would also boost performance.

5.2 Coverage Range
Sherlock’s optical scanning inspects areas sequentially, in-
creasing the scan time as a function of area. It also relies on
the reflective lens property, limiting the effective detection
angle and range [17]. Sherlock aims for fully automated drone
scanning, using multiple drones to divide large areas, mak-
ing scanning manageable. Enhancing the flashlight intensity
and reducing shutter intervals with external hardware can
shorten scanning times and improve image quality.

6 RELATEDWORK
WiFi. Many related works attempt to detect and localize
hidden cameras that transmit video information wirelessly
via two methods: analyzing wireless traffic patterns [5, 6, 19]
and correlating traffic/channel state information to external
stimuli [5, 8, 13, 18]. However, none can locate non-wireless
hidden cameras that store video locally.
Electromagnetic Interference.A recentwork detects actively-
recording hidden cameras via the electromagnetic leakage
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of their clock signals [14]. However, this technique only ap-
proximates the cameras’ locations. Another work relies on
the non-linear interference of such electronics on millimeter
wave (mmWave) radar signals [11]. However, this is slow as
it cannot differentiate hidden cameras from other devices.
Thermal. Thermal imaging could identify hidden cameras
as they emit some heat [20, 22]. However, complex thermal
environments (e.g., a camera hidden within another heat
source, such as a WiFi router) could bring challenges, and it
is unclear how generalizable it is in various environments.
Optical. Optical methods such as Sherlock prove the exis-
tence of cameras by detecting retro-reflections from lenses.
A recent work, LAPD [17], uses commodity smartphones but
works only with smartphones with time-of-flight (ToF) sen-
sors, and its scanning process is tedious and slow. Sherlock
can scan comprehensively and only requires an inexpensive
RGB camera and flashlight as the core sensing modality.

7 CONCLUSION
We present Sherlock, a fully automated hidden camera detec-
tion system using a drone, that is able to detect and locate
hidden camera lenses. Sherlock utilizes a flickering flashlight
and rolling shutter effects to capture the image of the target
area with the light on and off within a single frame. This
approach enables Sherlock to identify reflective objects and
categorize them as hidden camera lenses within a shorter
scanning period compared to the state-of-the-art solutions.
In our preliminary evaluation, we demonstrate that Sherlock
achieves a reliable detection rate for hidden camera lenses.
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