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Background Time-Efficient TTA Suitable for Mobile App is Needed
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* High latency: Bottleneck in applying TTA to mobile device/scenario

* Deep learning models on mobile applications

often suffer from domain shifts
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« Test-Time Adaptation (TTA) rapidly adapts « State-of-the-art TTA algorithms have been designed and evaluated
models without any source or labeled data mainly on GPU servers, focusing on improving accuracy
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» Backpropagation, Augmentations, Teacher-Student Models ---

Sparse Adaptation Framework : Strategically Skip Batches and Effectively Update Model
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« Sparse adaptation: Skip adaptation boldly and compensate for it

L by strong update via domain-informative samples : ,
| | Domain-irrelevant , | , . = Some samples can greatly contribute
- » By strategically controlling the ADaptation Rate (ADR), our =

competitive accuracy even against 1.

to domain adaptation /oss.

system balances inference fps and model accuracy

Experimental Results & Discussions
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« [Acc] Sparse adaptation with memory can achieve even

higher accuracy than adapting every batch (baseline)
) ‘ | “ | “ I || | || « Seamlessly integrate with existing lightweight adaptation
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and optimization algorithms, further accelerating inference
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across diverse mobile systems
TESLA: enabling efficient and effective TTA for

resource-constrained real-time mobile applications
Future works
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across diverse adaptation rates — sampling methods  Room for Acc improvement: sparse update-aware inference
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