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ABSTRACT
When deployed in mobile scenarios, deep learning models often
suffer from performance degradation due to domain shifts. Test-
Time Adaptation (TTA) offers a viable solution, but current ap-
proaches face latency issues on resource-constrained mobile de-
vices. We propose TESLA: Time-Efficient Sparse and Lightweight
Adaptation strategy for real-time mobile applications, which skips
adaptation for specific batches to increase the inference sample
rate. Our method balances model accuracy and inference speed
by accumulating domain-informative samples from non-adapted
batches and sparsely adapting them. Experiments on edge devices
demonstrate competitive accuracy even with sparse adaptation
rates, highlighting the effectiveness of our approach in real-time
mobile applications. Our strategy can seamlessly integrate with ex-
isting lightweight adaptation and optimization algorithms, further
accelerating inference across diverse mobile systems.

CCS CONCEPTS
• Computing methodologies → Learning under covariate
shift; Online learning settings.
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1 INTRODUCTION
While deep learning has revolutionized AI, its performance de-
grades significantly under domain shifts caused by environmental
changes or noise [1]. To mitigate this, Test-Time Adaptation (TTA)
is a promising solution utilizing only test samples without source
or labeled data. Most TTA algorithms have been designed and
evaluated on GPU-accelerated scenarios, focusing on improving
classification accuracy. In contrast, many real-world applications
necessitate deploying TTA on resource-constrained edge devices
with low computational power, such as mobile devices, CCTVs, or
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Figure 1: TTA run on the mobile edge device: (a) Average
latency per batch. (b) Continuous adaptation performance
by TENT with diverse adaptation rates.

sensors. Existing TTA methods face significant latency bottlenecks
on these devices, hampering their applicability for real-time ap-
plications such as autonomous driving, in which rapidly varying
conditions demand efficient domain adaptation.

The latency issue in TTA algorithms stems from computation-
ally intensive operations such as backpropagation, augmentations,
teacher-student model structures, and model ensembling. These
operations demand substantial time and memory resources, which
can be problematic on mobile edge devices. Figure 1(a) shows that
even lightweight algorithms such as TENT [2] demand almost four
seconds per batch (16) adaptation cycle on real edge devices.

Furthermore, computational requirements escalate significantly
for algorithms such as CoTTA [3] that update the entire parameters,
making them impractical for real-time mobile applications. Another
critical challenge arises from addressing the continuous adaptation
requirements of rapid data streams from mobile devices. Existing
TTA algorithms adapt to every input batch as illustrated in Figure 2,
leading to a growing mismatch between adaptation speed and data
stream rate. Consequently, the adapted model becomes increasingly
outdated, resulting in accuracy degradation or failure to meet the
desired real-time inference sample rate.

Our study reveals conventional adaptation strategies are ill-
suited for real-time mobile applications due to significant latency
overhead. To overcome this, we propose TESLA: Time-Efficient
Sparse and Lightweight Adaptation strategy for real-time mobile
applications, which carefully skips adaptation for specific batches.
This counterintuitive yet effective approach strategically rests the
adaptation process, significantly boosting the average inference
speed. Additionally, by utilizing a lightweight memory to accumu-
late informative samples from non-adapted batches and update the
model through them, our method can potentially maintain or even
improve the model’s accuracy in realistic settings. The combina-
tion of sparse adaptation and selective aggregation of informative
samples strikes a balance between model accuracy and inference
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Figure 2: Design overview of TESLA (green) and compar-
ison with the baselines. Yellow samples are the domain-
informative ones that can effectively adapt the model.

speed, enabling efficient and effective TTA for resource-constrained
real-time mobile applications.

2 DESIGN OF TESLA
As a practical scheme for real-time applications on edge devices, our
proposed strategy seamlessly integrates with TTA algorithms that
adapt to input data streams. The key idea of TESLA is strategically
skipping adaptation for over 50% of the batches while maintaining
competitive performance. This sparse adaptation approach signifi-
cantly increases the inference sample rate, addressing the latency
problem faced by existing methods that adapt to every batch.

Our intermittent adaptation procedure selectively adapts to batches
based on predetermined criteria and policies. It sparsely adapts to
meet real-time inference sample rate requirements while collecting
domain-wise informative samples for effective adaptation. This
strategy reduces overall latency and mitigates catastrophic forget-
ting by avoiding constant updates with potentially harmful sam-
ples. To leverage informative samples from non-adapted batches,
we employ a memory-efficient mechanism to temporarily store
and collectively adapt these samples when resources are available.
This method benefits from valuable information without increasing
adaptation frequency.

By strategically controlling the adaptation rate, our approach en-
ables existing TTA methods to maintain competitive performance
while significantly improving the inference sample rate, making
TTA efficient and effective for latency-critical real-time applica-
tions. It complements lightweight, optimization-free algorithms
and model compression techniques, further accelerating inference
on edge devices.

3 EVALUATION
Experiments are conducted on a Raspberry Pi 4 device (Quad-core
Cortex-A72 64-bit SoC @ 1.8GHz, 4GB RAM) using ResNet-18 with
batch size 16 on CIFAR-10C dataset (Gaussian noise, severity level
5). Following Section 2, we employ a sparse adaptation scheme,
updating the model with only a subset of batches based on a pre-
defined adaptation rate (ADR) while freezing the model for the
remaining batches.

Varying Adaptation Rates. We analyze the sparse adaptation
performance, including average accuracy and inference frequency
across different ADRs. As expected, higher ADRs increase accuracy

Figure 3: Performance (average accuracy and inference rate)
variation across diverse adaptation rates. Additionally, it com-
pares scenarios without (blue, baseline) and with (the others)
memory.

but lower inference frequency, and vice versa (Figure 3). The re-
markable point is the following: an extremely sparse ADR of 0.01
(updating once per 100 batches) achieves comparable accuracy to
adapting 10 times more frequently, as seen in Figure 1(b). This plot
demonstrates that from around the 300th batch onwards, ADR 0.01
consistently maintains competitive performance even against 1.
These results suggest that intelligently skipping batches and se-
lectively adapting to informative samples can effectively balance
inference rate and accuracy.

Domain-Informative SampleAccumulation. Instead of adapt-
ing to entire batches or simply skipping, we explored accumulating
samples from non-adapted batches in a memory buffer and collec-
tively adapting the model to these stored samples. Figure 3 yellow
bars show that adapting to all non-adapted batch data without
specific sampling led to significant accuracy improvements over
the baseline across ADRs. However, maintaining a large buffer is
impractical for edge devices and risks including non-informative
samples. We investigated memory sizes of 16, 32, and 64 samples
with random replacement. Figure 3 green bars show employing
modest memory sizes consistently outperformed no-memory, with
larger sizes yielding more significant gains. Notably, for TENT,
sparse adaptation with memory achieved even higher accuracy
than adapting every batch (baseline), suggesting skipping updates
can efficiently and effectively learn domains while mitigating over-
fitting to indifferent samples.
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